
james.r.collins@aya.yale.edu  
 , @jamesrco

http://jamesrco.github.io

Some modest advice
about open-source

software development *
Jamie Collins

Woods Hole Oceanographic Institution

* Presumes you intend to develop something for public consumption at
project outset, but most advice useful in retroactive scenario as well

Perspective
• Mostly R (own recent experience developing

LOBSTAHS package)

• https://github.com/vanmooylipidomics/LOBSTAHS

• http://bioconductor.org/packages/LOBSTAHS

• Includes some resources specific to R development

• But… most advice applies to package development
in Python as well

At the beginning…
• Ask yourself up front:

• Will a loose collection of scripts suffice?

• Do I really need/want to develop a
package?

• Target audience (size and type)
instructive here

If a package it is…
• Again, think about audience

• Version control (Git, Subversion) is critical (adopt early)

• All your code is probably nicely organized in a
repository anyway, right?

• Facilitates collaboration

• Makes it easy to walk back mistakes & float new
features without breaking everything

If a package it is…
• Code hygiene will be important; don’t wait until later to

clean up your mess

• Documentation may be most time-consuming
component, so start early

• Build docs/manual pages for functions as you go

• Make them useful (don’t do the minimum only to spoof a
package checker)

• Good documentation will make your software more
appealing and useful

As you work toward the goal
• Unit tests (make lots of them, use lots of them)

• Trial and error (on your development branch, of course)

• The #opensource, #openaccess community is ready to
help; find a good listserv or forum and ask away

• …but pay it forward and assist in the future when
you’re the one who knows the answer

• If in R: Run R CMD check, R CMD BiocCheck early &
often

Once it’s out there
• Support your work & be willing to fix bugs

(especially early on)

• What happens after you leave: Do you have
a software sustainability plan?

• Some repositories will sunset or mothball
your package after years of inactivity, but it
might still be useful to someone

Once it’s out there
• Consider creating a companion data package containing

a validated example/demonstration dataset that you
understand

• Helps users learn your software

• Promote: A published paper helps, but so does accession
to a repository (CRAN or Bioconductor for R)

• Social media?

• Get credit: Can use Zenodo to archive and obtain DOI for
each release of your package; new solutions on horizon

Advice specific to R
• Functionalize everything as soon as you can

(another reason to start thinking about the future
early)

• The apply functions are far better (and faster) than
most if… then… statements

• Maintaining a Git repo and a parallel package
instance in Bioconductor’s Subversion system is
nontrivial; happy to share some pointers if/when
you get there: james.r.collins@aya.yale.edu

Some general resources
• https://software-carpentry.org/ (if very new to the idea of open-

source development or coding, sign yourself up for a workshop)

• ESIP Software Guidelines, draft October 2016: https://
esipfed.github.io/Software-Assessment-Guidelines/
guidelines.html (thanks, Stace)

• A few useful papers (credit C. Titus Brown, Stace Beaulieu):

• http://journals.plos.org/plosbiology/article?id=10.1371/
journal.pbio.1002303

• https://arxiv.org/pdf/1609.00037v2.pdf

Some R resources
• https://hilaryparker.com/2014/04/29/writing-an-r-package-from-

scratch/

• https://cran.r-project.org/doc/manuals/r-release/R-exts.html

• Bioconductor best practices (even if not submitting to Bioconductor):

• https://www.bioconductor.org/developers/how-to/
buildingPackagesForBioc/

• https://www.bioconductor.org/developers/how-to/coding-style/

• Anything by Hadley Wickham, but particularly:

• http://r-pkgs.had.co.nz/man.html (guidance on documentation)

